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Abstract

Background: Quality assessment of medical images is highly related to the quality assurance, image interpretation
and decision making. As to magnetic resonance (MR) images, signal-to-noise ratio (SNR) is routinely used as a
quality indicator, while little knowledge is known of its consistency regarding different observers.

Methods: In total, 192, 88, 76 and 55 brain images are acquired using T2
*, T1, T2 and contrast-enhanced T1 (T1C)

weighted MR imaging sequences, respectively. To each imaging protocol, the consistency of SNR measurement is
verified between and within two observers, and white matter (WM) and cerebral spinal fluid (CSF) are alternately
used as the tissue region of interest (TOI) for SNR measurement. The procedure is repeated on another day within
30 days. At first, overlapped voxels in TOIs are quantified with Dice index. Then, test-retest reliability is assessed in
terms of intra-class correlation coefficient (ICC). After that, four models (BIQI, BLIINDS-II, BRISQUE and NIQE) primarily
used for the quality assessment of natural images are borrowed to predict the quality of MR images. And in the
end, the correlation between SNR values and predicted results is analyzed.

Results: To the same TOI in each MR imaging sequence, less than 6% voxels are overlapped between manual
delineations. In the quality estimation of MR images, statistical analysis indicates no significant difference between
observers (Wilcoxon rank sum test, pw ≥ 0.11; paired-sample t test, pp ≥ 0.26), and good to very good intra- and
inter-observer reliability are found (ICC, picc≥ 0.74). Furthermore, Pearson correlation coefficient (rp) suggests that
SNRwm correlates strongly with BIQI, BLIINDS-II and BRISQUE in T2

* (rp ≥ 0.78), BRISQUE and NIQE in T1 (rp ≥ 0.77),
BLIINDS-II in T2 (rp ≥ 0.68) and BRISQUE and NIQE in T1C (rp ≥ 0.62) weighted MR images, while SNRcsf correlates
strongly with BLIINDS-II in T2

* (rp ≥ 0.63) and in T2 (rp ≥ 0.64) weighted MR images.

Conclusions: The consistency of SNR measurement is validated regarding various observers and MR imaging
protocols. When SNR measurement performs as the quality indicator of MR images, BRISQUE and BLIINDS-II can be
conditionally used for the automated quality estimation of human brain MR images.
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Background
Medical image quality is highly related to many clinical
applications, such as screening, abnormality detection
and disease diagnosis. Nowadays, various kinds of im-
aging modalities are daily used, such as computerized
tomography (CT) and magnetic resonance (MR) im-
aging, not to speak of these devices under development
[1–3]. At the same time, massive medical images are col-
lected and used to support the clinical decision making
in each day. Therefore, how to evaluate the medical
image quality wins increasing attention [4, 5].
Medical image quality assessment (MIQA) is crucial in

the equipment quality assurance [6–8], comparison of
algorithms for image restoration [9–13], image interpret-
ation [14–17] and disease diagnosis [18, 19]. These
MIQA algorithms can be grouped into the full- and no-
reference categories [19–23]. The full-reference algo-
rithms require the access to the reference image, while it
is often unavailable in the medical imaging domain. To
tackle this problem, the images from advanced devices
are used as the reference to validate the proposed
methods with images from common devices [24, 25].
However, this kind of approaches leads to new obstacles
due to uncontrollable motion and particularly the differ-
ent imaging characteristics. Comparatively, no-reference
MIQA algorithms are more useful and challenging, and
no reference information can be borrowed [20, 23, 26].
As a quality indicator of medical images, signal-to-

noise ratio (SNR) is widely used to evaluate the develop-
ment of new hardware and image processing algorithms
[19, 23, 26–31]. The most common approach for SNR
measurement, known as a “two-region” approach, is
based on the signal statistics in two separate regions of
interest (ROIs) from a single image. One is the tissue
ROI (TOI) which determines the signal and the other
ROI is localized in the object-free region which mea-
sures the noise [27, 28, 32]. The quality comparison of
medical images with SNR measurement is still difficult
across studies [23]. Above all, SNR values might vary ac-
cording to the delineation of ROIs. For specific pur-
poses, different tissues are concerned. And regarding the
same purpose, it is impossible to delineate an identical
tissue region. Moreover, the quality of MR imaging ac-
quisition is closely related to the magnetic field strength
(1.5 T, 3 T, etc), imaging protocol (T1, T2, etc), field of
view (FOV), reconstruction methods and other signifi-
cant factors. Furthermore, medical imaging is prone to
unavoidable noise and artifacts. Besides, a great chal-
lenge might come from the fact that there are diverse
imaging characteristics across modalities. Therefore, a
consistency evaluation of SNR measurement is helpful in
the further comparison of medical image quality.
In this paper, we evaluate the reliability of SNR meas-

urement regarding different observers. At the preliminary

stage, this study is confined to human brain MR images
and four MR imaging sequences are analyzed. To the best
of our knowledge, the most similar work is [26], in which
it conducted the correlation analysis between subjective
evaluation and 13 full-reference models. These models are
primarily used for natural image quality assessment
(NIQA). However, the study is with poor generalization.
First, the experiment was based on synthesized distortions
on 25 reference MR images and the result might be not so
convincing in regard to real-life medical images. Second,
the study involved subjective estimation to score the
image quality, which is time consuming and expensive.
On contrary, in this study, 411 in vivo human brain MR
images are collected and 2 observers are involved to
localize the tissue regions of white matter (WM) and cere-
bral spinal fluid (CSF) as the TOI for SNR measurement.
Most importantly, this study investigates the SNR
consistency regarding different observers. After the reli-
ability of SNR measurement is verified, 4 no-reference
NIQA models are borrowed from the computer vision
community to predict the MR image quality, and further-
more, the correlation between the predicted results and
SNR values is explored. On the whole, this study might
shed some light on automated objective MIQA with less
time and expenditure.

Methods
Data collection
In total, 192 T2

* weighted MR images of healthy brain,
88 T1, 76 T2 and 55 contrast enhanced T1 (T1C)
weighted MR images of brain with cancerous tumors are
collected. Participants were scanned with a 3.0 T
scanner (Siemens, Erlangen, Germany) and an 8-channel
brain phased-array coil was used.
Specifically, T2

* weighted images are acquired using
gradient-echo pulse sequence. Its time of repetition (TR)
is 200 ms and time of echo (TE) varies from 2.61 ms to
38.91 ms with an equal interval of 3.3 ms. The flip angle
is 15o, FOV is 220 × 220 mm2, slice thickness is 3.0 mm
and the resultant image matrix is 384 × 384. Note that
the original purpose of multi-echo T2

* weighted image
acquisition is toward tissue dissimilarity analysis [12].
T1, T2 and T1C weighted images are acquired using spin
echo protocol with different TR and TE pairs (535 ms
and 8 ms; 3500 ms and 105 ms; 650 ms and 9 ms). The
flip angle is 15o, FOV is 220 × 220 mm2 and slice
thickness is 1 mm or 2 mm. The resultant image size of
T1 and T1C weighted MR images varies from 512 × 432
to 668 × 512, while the matrix size of T2 weighted MR
images is ranged from 384 × 324 to 640 × 640.

Image pre-processing
To each image, pixel intensity is linearly scaled to
[0, 255]. Then, two TOIs (WM and CSF) are outlined in
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addition to two air regions. A non-physician (observer
A, OA) and a radiologist with more than 15-year
experience (observer B, OB) are asked to determine
ROIs manually. Since the observers work separately
and independently, they agree on that the size of out-
lined ROIs should be as large as possible. Further-
more, to T1, T2 and T1C weighted MR images, they
also agree on that TOIs should be homogeneous and
keep away from the tumor areas. The initial shape of
each ROI is approximated with six points (the red
sparkles in Fig. 1) and further refined by using a free-
form curve-fitting method [33, 34]. The curve-fitting
method takes the six points as the control points and
Hermite cubic curve [35] is utilized for smooth
interpolation between the points. In the end, outlined
regions are as input to our in-house built algorithm
with MATLAB (Mathworks, Natick, MA, USA) to
measure the WM-based SNR (SNRwm) and CSF-based
SNR (SNRcsf ) values. Note that the procedure is re-
peated on another day within 30 days for intra-
observer reliability analysis.
Figure 1 shows T2

* (A), T1 (B), T2 (C) and T1C (D)
weighted MR images. In each image, WM, CSF and
AIR regions are in closed curves which are highlighted
with pink, blue and yellow lines, respectively. Note that
the red sparkles are primarily points localized by
observers and images have been cropped for display
purpose.

SNR measurement
Two approaches exist for SNR measurement. The
most common one requires two separate ROIs from a
single image [27, 28]. By taking the signal (S) to be
the average intensity in a tissue ROI (μTOI) and the
noise (σ) to be the standard deviation of the pixel in-
tensity in a background ROI (σAIR), we can approxi-
mate the SNR value of the image as below,

SNRTOI ¼ S
σ
¼ 0:655� μTOI

σAIR
: ð1Þ

Due to the Rician distribution of the background noise
in a magnitude image, the factor of 0.655 arises because
noise variations can be negative and positive [27, 28].
If the image is not homogeneous, the SNR measure-

ment can be derived from the second approach [36, 37].
At first, a couple of images are acquired by consecutive
scans and the MR device is equipped with identical im-
aging settings. And then, a difference image is derived
by subtracting the images one from the other. Since the
images are consecutively acquired on without any in-
stability, the noise should be the only difference between
the two original images. Taking the signal (S) as the
mean pixel intensity value in a tissue ROI (μoTOI) on one
original image and the noise as the standard deviation
(σ) in the same ROI on the subtracted image (σsTOI),SNR
can be estimated as

SNRTOI ¼ S
σ
¼

ffiffiffi

2
p

� μoTOI
σ sTOI

; ð2Þ

where the factor of
ffiffiffi

2
p

arises because the standard
deviation (σ) is derived from the subtraction image but
not from the original image.
This study utilizes Eq. (1) to measure SNR values of

MR images, since image homogeneity is warranted in
this study. In addition, the second approach is com-
monly used for equipment quality assurance and
requires scanning the object twice.

No-reference NIQA
Massive NIQA models are developed each year, while
few models are used in the medical imaging community
[38–40]. This study makes use of four automated no-
reference NIQA methods to predict the MR image
quality. The correlation analysis between SNR values

Fig. 1 Manual outline of tissue regions and air regions. a, b, c, d are T2
*, T1, T2 and T1C weighted MR images, respectively. b, c, d demonstrates

one example of a subject. Primarily points localized by observers are noted with red sparkles. Outlined WM, CSF and AIR regions are in closed
curves with pink, blue and yellow lines, respectively. Note that images have been cropped for display purpose
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and NIQA results aims to find potential no-reference
NIQA models for MIQA applications.
Involved NIQA models utilize natural scene statistics

(NSS) to estimate the general quality of natural images.
Specifically, the blind image quality index (BIQI) [41]
estimates the image quality based on the statistical fea-
tures extracted in discrete wavelet transform (DWT). It
requires no knowledge of the distortion types and can
be extended to any kinds of distortions. The second in-
dicator (BLIINDS-II) [42] is an improved version of
blind image integrity notator using discrete cosine trans-
form (DCT) statistics [38]. It adopts a general statistical
model for score prediction. The third one, blind/referen-
celess image spatial quality evaluator (BRISQUE) [43],
makes use of the locally normalized luminance coeffi-
cients and quantifies possible losses of “naturalness”
which is a holistic measure of image quality. The last
one is the natural image quality evaluator (NIQE) [44].
It builds a “quality-aware” selector that collects statistical
features for natural image quality estimation.
These NIQA models are implemented with MATLAB

(the Mathworks, Natick, MA, USA) and the codes pro-
vided by the authors are accessible online. The models
are evaluated without modifications in this study. Full
details of these algorithms can be referred to corre-
sponding literature [41–44].

Experiment design
The experiment is divided into three steps. First, the over-
lapping ratio of manually outlined TOIs between and
within observers are concerned and Dice index is

employed. The index is defined as d ¼ 2� jX∩Y j
jXjþjY j � 100%,

where X and Y stand for the TOI, and the signal ∣ ∣
indicates TOI computed as the number of voxels in the
region. The Dice index equal to 100% means the two TOIs
are identical, while it equal to 0% indicates the two TOIs
are absolutely non-overlapping.
Then, with respect to the same TOI in each imaging

sequence, the inter-observer difference is assessed with
Wilcoxon rank sum test [45, 46] and paired-sample t-
test [47]. The statistical analysis is performed using R
(http://www.Rproject.org) and a significance level is set
as 0.05. Moreover, the test-retest reliability is evaluated

in terms of intra-class correlation coefficient (ICC, picc)
using a two-way mixed-effects model [48]. The values of
picc ranging from 0.81 to 1.00 suggest very good reliabil-
ity and 0.61 to 0.80 good reliability.
In the end, the correlation between SNR values and

NIQA results is analyzed by using Pearson correlation
coefficient (rp) [49]. Note that the values of rp ranging
from 0.81 to 1.00 indicate very strong or good correl-
ation, while 0.61 to 0.80 good or strong correlation.

Results
Overlapped voxels in TOIs
Table 1 summarizes the number of voxels in TOIs in
each MR sequence (the mean and standard deviation,
μ ± σ). It is found that hundreds of voxels are outlined for
SNR measurement and the minimum is 330±72.
Specifically, the overlapping ratio is described with

Dice index as shown in Table 2. It indicates that less
than 6% voxels are overlapped between and within
observers in the manual delineation of TOIs.

Analysis of SNR values
Figure 2 shows the first-time measurement of SNR
values by using Bland & Altman plots [50]. It is a scatter
diagram of the differences plotted against the averages of
two SNR observations. In each plot, the average and the

Table 1 The number of voxels in the outlined tissue regions

T2
* T1 T2 T1C

WM CSF WM CSF WM CSF WM CSF

The first time OA 423 (95) 381 (117) 558 (173) 614 (258) 609 (239) 889 (366) 523 (146) 704 (314)

OB 330 (72) 333 (138) 567 (181) 649 (318) 414 (174) 699 (288) 477 (156) 663 (272)

The second time OA 382 (88) 378 (104) 530 (187) 626 (219) 589 (251) 853 (349) 505 (138) 692 (290)

OB 357 (119) 342 (119) 582 (176) 663 (282) 447 (195) 721 (306) 480 (177) 686 (268)

Table 2 Dice index for the overlapped percentage of voxels in
the TOIs between and within observers

WM CSF

OB1 OB2 OA2 OB1 OB2

T2
* OA1 0.05 0.03 0.05 0.04 0.03

OA2 0.03 0.04 0.03 0.03

OB1 0.06 0.06

T1 OA1 0.02 0.03 0.03 0.04 0.03

OA2 0.03 0.03 0.01 0.02

OB1 0.02 0.02

T2 OA1 0.02 0.04 0.02 0.02 0.01

OA2 0.03 0.03 0.03 0.02

OB1 0.02 0.02

T1C OA1 0.02 0.02 0.03 0.02 0.03

OA2 0.02 0.03 0.01 0.03

OB1 0.04 0.02
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Fig. 2 Bland & Altman plots of SNR values. It presents the SNR values of the first time measurement. The left column represents SNRwm values
and the right shows SNRcsf values. The solid lines indicate the mean values of SNR measurements and the dashed lines indicate the 95%
confident interval of the difference between observations
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difference of SNR values can be perceived from the
horizontal and the vertical axis respectively. In addition,
horizontal lines are drawn at the mean difference be-
tween two SNR observations and at the limits of agree-
ment. The latter is defined as the mean difference plus
and minus 1.96 times the standard deviation (SD) of the
SNR difference. The Bland & Altman plots show that
more than 89% points are localized between the limits of
agreement.

Inter-observer difference
Inter-observer difference of SNR observations is analyzed
with Wilcoxon rank sum test (pw) and paired-sample t test
(pp). Corresponding results are show in Table 3. Note that
the minimum value is boldfaced in each test. It is observed
that the minimal pw is 0.11 and pp is 0.26. It is also found
that both pw and pp from SNRwm are larger than those
from SNRcsf, correspondingly.

Test-retest reliability
Table 4 lists the result of test-retest reliability. Note that
ICC1 and ICC2 respectively stands for intra- and inter-
observer correlation coefficient. As shown in the Table,
very good intra-observer reliability of the experience radi-
ologist (OB) is found (picc ≥ 0.81). Similar results are found
on the non-physician (OA) except that only good
reliability is achieved for SNRcsf on T2

* (picc ≥ 0.79) and T2

(picc ≥ 0.76) weighted MR images. Furthermore, good to
very good inter-observer reliability is found (picc ≥ 0.80)
but only good inter-observer reliability is found for SNRcsf

in T2
* weighted MR imaging sequence (picc ≥ 0.74).

Correlation between SNR and NIQA
Table 5 shows the correlation coefficients (rp) between
mean SNR values of each TOI (two measurements each
observer) and NIQA results. The bold-faced rp values in
red and blue denote rp ≥ 0.60. Specifically, to SNRwm,

BIQI, BLIINDS-II and BRISQUE on T2
* (rp ≥ 0.78),

BRISQUE and NIQE on T1 (rp ≥ 0.77), BLIINDS-II on T2

(rp ≥ 0.68), and BRISQUE and NIQE on T1C (rp ≥ 0.62)
images show strong correlation; while to SNRcsf

values, BLIINDS-II correlates well on T2
* (rp ≥ 0.63)

and T2 (rp ≥ 0.64) weighted MR imaging sequence.

Discussion
This paper has validated the consistency of SNR meas-
urement in the quality assessment of human brain MR
images. Moreover, the correlation between TOI-based
SNR measurement and NIQA models has been analyzed.
The study suggests that off-the-shelf NIQA models used
in computer vision community are full of potential for
automated and objective MIQA applications.
The consistency evaluation indicates that SNR meas-

urement is reliable to different observers in each MR
imaging sequence. In image pre-processing, TOIs are
randomly localized. When no overlapping between
TOIs, the Dice index would be zero. On average, TOIs
are slightly overlapped by no more than 6% [Table 2],
while the statistical analysis indicates that SNR values are
not significantly changed between observers [Table 3].
That means independent localization of TOIs makes no
difference to SNR measurement. Moreover, the test-retest
reliability study suggests good to very good intra- and
inter-observer reliability (Table 4). That might be the
reason why SNR is widely used in clinical situations. And
accordingly, a non-physician can independently perform
the SNR measurement of MR images as good as an expe-
rienced physician does.
The correlation between SNR values and NIQA

models shows that BLIINDS-II correlates well with
SNRcsf on T2

* and T2 weighted MR images, since CSF
presents relatively higher voxel intensity over other
tissues that leads to the robust estimation of SNRcsf. In
comparison to SNRcsf, more NIQA results are in good

Table 3 Statistical analysis of SNR measure in each imaging sequence regarding different TOIs

T2* T1 T2 T1C

WM CSF WM CSF WM CSF WM CSF

The first time pw 0.54 0.39 0.88 0.74 0.99 0.11 0.69 0.56

pp 0.41 0.30 0.98 0.59 0.94 0.28 0.77 0.46

The second time pw 0.57 0.33 0.92 0.75 0.95 0.18 0.72 0.58

pp 0.44 0.36 0.96 0.62 0.96 0.26 0.79 0.47

Table 4 Intra- and inter-observer reliability in terms of intra-class coefficients between the non- and experienced physician

T2* T1 T2 T1C

WM CSF WM CSF WM CSF WM CSF

Intra-observer reliability OA 0.84 0.79 0.91 0.87 0.95 0.76 0.89 0.86

OB 0.86 0.81 0.95 0.83 0.97 0.85 0.88 0.82

Inter-observer reliability ICC2 0.81 0.74 0.92 0.80 0.90 0.81 0.85 0.83
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correlation with SNRwm values, since WM is
distinguishable in involved MR imaging sequences.
Therefore, the authors suggest that tissue regions with
higher intensities should function as the TOI in SNR
measurement. On the whole, BRISQUE performs well as
an automated no-reference NIQA model for the qual-
ity assessment of T2

*, T1 and T1C weighted MR brain
images, and BLIINDS-II is superior on assessing the
quality of T2

* and T2 MR images independent of the
TOI selection. Consequently, it is full of potential to
modify NIQA models developed in the computer
vision community for MIQA applications in the
medical imaging domain [51]. It should be mentioned
that the correlation of SNR values and predicted
results is not very good (rp ≤ 0.85) and further
improvement or modifications of existing NIQA
models is needed.
SNR is frequently used as an image quality indica-

tor in clinic. It is a local measure regarding the whole
MR image. The SNR measurement can also be for-
mulated from the global signal by using the whole
object region as the tissue region. An overview of
existing definitions of SNR measurement can be
referred to [23]. More general and automated MIQA
algorithms include using Shannon’s theory to describe
the image content and then to model the spatial
spectral power density of the image as the quality
indicator [21] or analyzing the background of magni-
tude images of structural brain to represent the image
quality [52]. In particular, some researchers explore to
bridge the gap between SNR measurement and diag-
nostic accuracy or detectability [9, 18]. These studies
show superiority over the physical measure of image
quality, since the ultimate goal of medical imaging
aims at abnormality detection and disease diagnosis.

Conclusions
The consistency of SNR measurement is validated
regarding different observers. The correlation between
SNR measurement and NIQA models indicates that
BRISQUE works well for automated MIQA of T2

*, T1

and T1C weighted brain MR images, and BLIINDS-II is
superior over T2

* and T2 weighted images independent

of the TOI selection. Our future work will focus on the
connection of SNR measurement, NIQA models and
MIQA applications.
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